메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


KafkaWordCount.scala를 컴파일하여 jar로 만들고 아래중 한가지 방법으로 Consumer를 실행시킬수 있다.
(test-topic은 kafka에 topic으로 생성되어 있어야 하며 group name은 testg-1로 했다)

* 참고1 : msg producer생성 프로그램 실행(별도의 console창에서 아래를 먼저 실행해준다)
/svc/sda/bin/hadoop/spark/bin/spark-submit --master local[2] --class icbms.test.KafkaWordCountProducer --jars icbms-assembly-2.0.jar icbms_2.10-2.0.jar sda1:7077,sda2:7077 test-topic 1 1

참고2 : icbms-assembly-2.0.jar는 KafkaWordCount와 관련 jar파일이 모두 포함된 uber jar파일이고
icbms_2.10-2.0.jar는 관련jar가 포함되지 않은 KafkaWordCount.scala를 compile하여 jar로 만든 파일이다.

------------방법1(--master를 yarn으로 지정하고 --jars 옵션에 ,를 이용하여 필요한 jar를 모두 지정하는 경우)----------
/svc/sda/bin/hadoop/spark/bin/spark-submit --master yarn --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar,icbms_2.10-2.0.jar icbms_2.10-2.0.jar  sda1:2181,sda2:2181,sda3:2181 testg-1 test-topic 3

------------방법2(--master를 yarn으로 지정하고 --jars 옵션과 --files옵션을 이용하는 경우)----------
/svc/sda/bin/hadoop/spark/bin/spark-submit --master yarn --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar --files icbms_2.10-2.0.jar icbms_2.10-2.0.jar sda1:2181,sda2:2181,sda3:2181 testg-1 test-topic 3
 
------------방법3(--master를 local[2]로 지정하고 --jars 옵션을 이용하여 uber jar만 지정하는 경우)----------
/svc/sda/bin/hadoop/spark/bin/spark-submit --master local[2] --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar icbms_2.10-2.0.jar  sda1:2181,sda2:2181 testg-1 test-topic 3

------------방법4(--master를 spark 지정하고 --jars 옵션을 이용하여 uber jar만 지정하는 경우)----------
/svc/sda/bin/hadoop/spark/bin/spark-submit --master spark://sda1:7077,sda2:7077 --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar icbms-assembly-2.0.jar  sda1:2181,sda2:2181,sda3:2181 testg-1 test-topic 3


----------------------------샘플소스(KafkaWordCount.scala)---------
package icbms.test

import java.util.HashMap
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions

object KafkaWordCount {
  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
      System.exit(1)
    }

    //StreamingExamples.setStreamingLogLevels()

    val Array(zkQuorum, group, topics, numThreads) = args
    val sparkConf = new SparkConf().setAppName("KafkaWordCount")
    val ssc = new StreamingContext(sparkConf, Seconds(2))
    ssc.checkpoint("checkpoint")

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L))
      .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
    wordCounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
}

// Produces some random words between 1 and 100.
object KafkaWordCountProducer {

  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " +
        "<messagesPerSec> <wordsPerMessage>")
      System.exit(1)
    }

    val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args

    // Zookeeper connection properties
    val props = new HashMap[String, Object]()
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")

    val producer = new KafkaProducer[String, String](props)

    // Send some messages
    while(true) {
      (1 to messagesPerSec.toInt).foreach { messageNum =>
        val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
          .mkString(" ")

        val message = new ProducerRecord[String, String](topic, null, str)
        producer.send(message)
      }

      Thread.sleep(1000)
    }
  }

}
번호 제목 날짜 조회 수
151 AIX 7.1에 MariaDB 10.2 소스 설치 2016.09.24 5821
150 ./hadoop-daemon.sh start namenode로 namenode기동시 EditLog의 custerId, namespaceId가 달라서 발생하는 오류 해결방법 2016.09.24 3696
149 hadoop 어플리케이션을 사용하는 사용자 변경시 바꿔줘야 하는 부분 2016.09.23 3976
148 format된 namenode를 다른 서버에서 다시 format했을때 오류내용 2016.09.22 3173
147 AIX 7.1에 Hadoop설치(정리중#2) 2016.09.20 2719
146 AIX 7.1에 Hadoop설치(정리중) 2016.09.12 4310
145 No broker partitions consumed by consumer thread오류 발생시 확인/조치할 사항 2016.09.02 5591
144 kafka 0.9.0.1버젼의 producer와 kafka버젼이 0.10.0.1인 consumer가 서로 대화하는 모습 2016.08.18 4002
143 down된 broker로 메세지를 전송하려는 경우의 오류 내용및 조치사항 2016.08.12 2818
» kafkaWordCount.scala의 producer와 consumer 클래스를 이용하여 kafka를 이용한 word count 테스트 하기 2016.08.02 3750
141 bin/start-hbase.sh실행시 org.apache.hadoop.hbase.util.FileSystemVersionException: HBase file layout needs to be upgraded오류가 발생하면 조치사항 2016.08.01 3924
140 start-all.sh로 spark데몬 기동시 "JAVA_HOME is not set"오류 발생시 조치사항 2016.08.01 4170
139 hadoop클러스터를 구성하던 서버중 HA를 담당하는 서버의 hostname등이 변경되어 문제가 발생했을때 조치사항 2016.07.29 3796
138 Journal Storage Directory /data/hadoop/journal/data/mycluster not formatted 오류시 조치사항 2016.07.29 5181
137 Apache Spark와 Drools를 이용한 CEP구현 테스트 2016.07.15 4656
136 org.apache.hadoop.hbase.ClockOutOfSyncException: org.apache.hadoop.hbase.ClockOutOfSyncException 오류시 조치사항 2016.07.14 2653
135 kafka로 부터 메세지를 stream으로 받아 처리하는 spark샘플소스(spark의 producer와 consumer를 sbt로 컴파일 하고 서버에서 spark-submit하는 방법) 2016.07.13 4318
134 avro 사용하기(avsc 스키마 파일 컴파일 방법, consumer, producer샘플소스) 2016.07.08 4845
133 spark-sql실행시 ERROR log: Got exception: java.lang.NumberFormatException For input string: "2000ms" 오류발생시 조치사항 2016.06.09 3644
132 spark-sql실행시 Caused by: java.lang.NumberFormatException: For input string: "0s" 오류발생시 조치사항 2016.06.09 7698
위로