메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


0. test-topic은 미리 생성해둔다.
(./bin/kafka-topics.sh --create --zookeeper gsda1:2181,gsda2:2181,gsda3:2181 --replication-factor 3 --partitions 3 --topic test-topic)

1. scala-ide용 eclipse에서 아래의 소스를 편집한다.

2. 해당 프로젝트의 console창에서 "sbt clean assemlby"를 실행하여 fat jar파일을 만든다.(파일명 : icbms-assembly-2.0.jar)

3. 서버에서 producer를 실행한다.(icbms.test.KafkaWordCountProducer)
/svc/apps/sda/bin/hadoop/spark/bin/spark-submit --master local[2] --class icbms.test.KafkaWordCountProducer --jars icbms-assembly-2.0.jar icbms_2.10-2.0.jar gsda1:7077,gsda2:7077 test-topic 1 1

4. 서버에서 consumer를 실행한다.(icbms.test.KafkaWordCount)
/svc/apps/sda/bin/hadoop/spark/bin/spark-submit --master local[2] --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar icbms_2.10-2.0.jar  gsda1:2181,gsda2:2181 testg-1 test-topic 1


* 다양한 실행방법
    (icbms-assembly-2.0.jar은 "sbt assembly"명령으로 만들어지며, icbms_2.10-2.0.jar는 "sbt package"명령으로 만들어진다.)

가. yarn에서 실행(#1) : /svc/apps/sda/bin/hadoop/spark/bin/spark-submit --master yarn --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar,icbms_2.10-2.0.jar icbms_2.10-2.0.jar  gsda1:2181,gsda2:2181 testg-1 test-topic 3

나. yarn에서 실행(#1) : /svc/apps/sda/bin/hadoop/spark/bin/spark-submit --master yarn --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar --files icbms_2.10-2.0.jar icbms_2.10-2.0.jar gsda1:2181,gsda2:2181 testg-1 test-topic 3

다. spark cluster에서 실행
/svc/apps/sda/bin/hadoop/spark/bin/spark-submit --master spark://gsda1:7077,sda2:7077 --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar icbms-assembly-2.0.jar gsda1:2181,gsda2:2181 testg-1 test-topic 3

라. local모드로 실행
/svc/apps/sda/bin/hadoop/spark/bin/spark-submit --master local[2] --class icbms.test.KafkaWordCount --jars icbms-assembly-2.0.jar icbms_2.10-2.0.jar gsda1:2181,sda2:2181 testg-1 test-topic 3



-----------------scala소스 빌드용 설정파일(project.sbt) ---------------
import sbtassembly.AssemblyPlugin._

name := "icbms"

version := "2.0"

 //scalaVersion := "2.11.8"
scalaVersion := "2.10.4"

resolvers += "Akka Repository" at "http://repo.akka.io/releases/"

libraryDependencies ++= Seq(
("org.apache.spark" %% "spark-core" % "1.3.1" % "provided")
.exclude("org.mortbay.jetty", "servlet-api").
    exclude("commons-beanutils", "commons-beanutils-core").
    exclude("commons-collections", "commons-collections").
    exclude("commons-logging", "commons-logging").
    exclude("com.esotericsoftware.minlog", "minlog").
    exclude("com.codahale.metrics", "metrics-core")
,
"org.apache.spark" %% "spark-sql" % "1.3.1" ,
"org.apache.spark" % "spark-streaming_2.10" % "1.3.1",
"org.apache.spark" % "spark-streaming-kafka_2.10" % "1.3.1" ,
"org.apache.kafka" % "kafka_2.10" % "0.9.0.1" ,
"org.apache.avro" % "avro" % "1.7.7" 
)

assemblyMergeStrategy in assembly := {
    case PathList("javax", "servlet", xs @ _*) => MergeStrategy.last
    case PathList("javax", "activation", xs @ _*) => MergeStrategy.last
    case PathList("org", "apache", xs @ _*) => MergeStrategy.last
    case PathList("com", "google", xs @ _*) => MergeStrategy.last
    case PathList("com", "esotericsoftware", xs @ _*) => MergeStrategy.last
    case PathList("com", "codahale", xs @ _*) => MergeStrategy.last
    case PathList("com", "yammer", xs @ _*) => MergeStrategy.last
    case "about.html" => MergeStrategy.rename
    case "META-INF/ECLIPSEF.RSA" => MergeStrategy.last
    case "META-INF/mailcap" => MergeStrategy.last
    case "META-INF/mimetypes.default" => MergeStrategy.last
    case "plugin.properties" => MergeStrategy.last
    case "log4j.properties" => MergeStrategy.last
    case x =>
        val oldStrategy = (assemblyMergeStrategy in assembly).value
        oldStrategy(x)
}

----------------------소스파일---------------
package icbms.test

import java.util.HashMap
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerConfig, ProducerRecord}
import org.apache.spark.SparkConf
import org.apache.spark.streaming._
import org.apache.spark.streaming.kafka._
import org.apache.spark.streaming.dstream.DStream.toPairDStreamFunctions

/**
 * Consumes messages from one or more topics in Kafka and does wordcount.
 * Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>
 *   <zkQuorum> is a list of one or more zookeeper servers that make quorum
 *   <group> is the name of kafka consumer group
 *   <topics> is a list of one or more kafka topics to consume from
 *   <numThreads> is the number of threads the kafka consumer should use
 *
 * Example:
 *    `$ bin/run-example
 *      org.apache.spark.examples.streaming.KafkaWordCount zoo01,zoo02,zoo03
 *      my-consumer-group topic1,topic2 1`
 */
object KafkaWordCount {
  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCount <zkQuorum> <group> <topics> <numThreads>")
      System.exit(1)
    }

    //StreamingExamples.setStreamingLogLevels()

    val Array(zkQuorum, group, topics, numThreads) = args
    val sparkConf = new SparkConf().setAppName("KafkaWordCount")
    //sparkConf.setMaster("spark://gsda1:7077,gsda2:7077")
    //sparkConf.setMaster("local[2]")
    val ssc = new StreamingContext(sparkConf, Seconds(2))
    ssc.checkpoint("checkpoint")

    val topicMap = topics.split(",").map((_, numThreads.toInt)).toMap
    val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicMap).map(_._2)
    val words = lines.flatMap(_.split(" "))
    val wordCounts = words.map(x => (x, 1L))
      .reduceByKeyAndWindow(_ + _, _ - _, Minutes(10), Seconds(2), 2)
    wordCounts.print()

    ssc.start()
    ssc.awaitTermination()
  }
}

// Produces some random words between 1 and 100.
object KafkaWordCountProducer {

  def main(args: Array[String]) {
    if (args.length < 4) {
      System.err.println("Usage: KafkaWordCountProducer <metadataBrokerList> <topic> " +
        "<messagesPerSec> <wordsPerMessage>")
      System.exit(1)
    }

    val Array(brokers, topic, messagesPerSec, wordsPerMessage) = args

    // Zookeeper connection properties
    val props = new HashMap[String, Object]()
    props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, brokers)
    props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")
    props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
      "org.apache.kafka.common.serialization.StringSerializer")

    val producer = new KafkaProducer[String, String](props)

    // Send some messages
    while(true) {
      (1 to messagesPerSec.toInt).foreach { messageNum =>
        val str = (1 to wordsPerMessage.toInt).map(x => scala.util.Random.nextInt(10).toString)
          .mkString(" ")

        val message = new ProducerRecord[String, String](topic, null, str)
        producer.send(message)
      }

      Thread.sleep(1000)
    }
  }

}
번호 제목 날짜 조회 수
242 커리 변경 이벤트를 처리하기 위한 구현클래스 2016.07.21 865
241 룰에 매칭되면 발생되는 엑티베이션 객체에 대한 작업(이전값 혹은 현재값)을 처리하는 클래스 파일 2016.07.21 379
240 실시간 쿼리 변환 모니터링(팩트내 필드값의 변경사항을 실시간으로 추적함)하는 테스트 java 프로그램 file 2016.07.21 199
239 Drools 6.0 - 비즈니스 룰 기반으로 간단한 룰 애플리케이션 만들기 file 2016.07.18 1036
238 Apache Spark와 Drools를 이용한 CEP구현 테스트 2016.07.15 1111
237 org.apache.hadoop.hbase.ClockOutOfSyncException: org.apache.hadoop.hbase.ClockOutOfSyncException 오류시 조치사항 2016.07.14 241
» kafka로 부터 메세지를 stream으로 받아 처리하는 spark샘플소스(spark의 producer와 consumer를 sbt로 컴파일 하고 서버에서 spark-submit하는 방법) 2016.07.13 787
235 [sbt] sbt-assembly를 이용하여 실행에 필요한 모든 j라이브러리를 포함한 fat jar파일 만들기 2016.07.11 2140
234 [sbt] sbt 0.13.11 를 windows에 설치하고 scala프로그램을 compile해서 jar파일 만들기 2016.07.11 678
233 avro 사용하기(avsc 스키마 파일 컴파일 방법, consumer, producer샘플소스) 2016.07.08 1571
232 DataSetCreator실행시 "Illegal character in fragment at index"오류가 나는 경우 조치방안 2016.06.17 602
231 5건의 triple data를 이용하여 특정 작업 폴더에서 작업하는 방법/절차 2016.06.16 156
230 queryTranslator실행시 NullPointerException가 발생전에 java.lang.ArrayIndexOutOfBoundsException발생시 조치사항 2016.06.16 937
229 S2RDF를 실행부분만 추출하여 1건의 triple data를 HDFS에 등록, sparql을 sql로 변환, sql실행하는 방법및 S2RDF소스 컴파일 방법 2016.06.15 551
228 S2RDF모듈의 실행부분만 추출하여 별도록 실행하는 방법(draft) 2016.06.14 292
227 spark-sql실행시 ERROR log: Got exception: java.lang.NumberFormatException For input string: "2000ms" 오류발생시 조치사항 2016.06.09 390
226 spark-sql실행시 Caused by: java.lang.NumberFormatException: For input string: "0s" 오류발생시 조치사항 2016.06.09 4759
225 spark-sql실행시 The specified datastore driver ("com.mysql.jdbc.Driver") was not found in the CLASSPATH오류 발생시 조치사항 2016.06.09 684
224 ./spark-sql 실행시 "java.lang.NumberFormatException: For input string: "1s"오류발생시 조치사항 2016.06.09 528
223 beeline실행시 User: root is not allowed to impersonate오류 발생시 조치사항 2016.06.03 922
위로