메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


*출처 : http://java8.tistory.com/39


1. 성공케이스

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase1 {
    JavaSparkContext sc = null;
 
    private TestCase1() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
        sc = new JavaSparkContext("local[2]", "First Spark App");
    }
 
    public static void main(String... strings) {
        TestCase1 t = new TestCase1();
        t.proc1();
        t.proc2();
    }
 
    private void proc1() {
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> a + 1);
        System.out.println(rdd3.collect());
    }
 
    private void proc2() {
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        int num2 = 3;
        JavaRDD<integer> rdd3 = rdd2.map(a -> a + num2);
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer></integer></integer>

좋은 케이스 : 에러 없이 잘... 작동한다.

JAVA8의 람다식이다.



2. 실패사례 - 전역변수(멤버필드)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase2 {
    private int num1 = 4;
    JavaSparkContext sc = null;
 
    private TestCase2() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
        sc = new JavaSparkContext("local[2]", "First Spark App");
    }
 
    public static void main(String... strings) {
        TestCase2 t = new TestCase2();
        System.out.println("t:"+t);
        t.proc3();
    }
 
    private void proc3() {
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> a + this.num1);                // Exception 발생
        System.out.println(rdd3.collect());
    }
 
}
 
 
</integer></integer>

Exception 발생

람다식에 this.num1 이 사용되었다. this는 TestCase2 자체를 의미하므로, 현재 TestCase2 가 Serializable 을 구현하지 않았으므로 아래와 같은 Exception 이 발생한다.


16/04/08 00:01:10 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
t:org.mystudy.testcase.TestCase2@247667dd
Exception in thread "main" org.apache.spark.SparkException: Task not serializable
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)
at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.map(RDD.scala:323)
at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)
at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)
at org.mystudy.testcase.TestCase2.proc3(TestCase2.java:26)
at org.mystudy.testcase.TestCase2.main(TestCase2.java:21)
Caused by: java.io.NotSerializableException: org.mystudy.testcase.TestCase2
Serialization stack:
- object not serializable (class: org.mystudy.testcase.TestCase2, value: org.mystudy.testcase.TestCase2@247667dd)
- element of array (index: 0)
- array (class [Ljava.lang.Object;, size 1)
- field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)
- object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.mystudy.testcase.TestCase2, functionalInterfaceMethod=org/apache/spark/api/java/function/Function.call:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeSpecial org/mystudy/testcase/TestCase2.lambda$0:(Ljava/lang/Integer;)Ljava/lang/Integer;, instantiatedMethodType=(Ljava/lang/Integer;)Ljava/lang/Integer;, numCaptured=1])
- writeReplace data (class: java.lang.invoke.SerializedLambda)
- object (class org.mystudy.testcase.TestCase2$$Lambda$4/503353142, org.mystudy.testcase.TestCase2$$Lambda$4/503353142@7a1f8def)
- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)
- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)
at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)
at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)
at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)
at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)
... 13 more

 
 


2-1 해결책

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase2Sol1 {
    private int num1 = 4;
    JavaSparkContext sc = null;
 
    private TestCase2Sol1() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
        sc = new JavaSparkContext("local[2]", "First Spark App");
    }
 
    public static void main(String... strings) {
        TestCase2Sol1 t = new TestCase2Sol1();
        t.proc3();
    }
 
    private void proc3() {
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        int num1 = this.num1;                                       // 해결
        JavaRDD<integer> rdd3 = rdd2.map(a -> a + num1);             // 해결
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

[러닝 스파크] 책에서 소개하는 방식으로...

this.num1의 값을 지역변수로 재할당해서 사용하면 된다.



2-2 이렇게도 해결할 수 있을까? 안돼~

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
package org.mystudy.testcase;
 
import java.io.Serializable;
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase2Sol2 implements Serializable {
    private int num1 = 4;
    private JavaSparkContext sc = null;
 
    private TestCase2Sol2() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
        sc = new JavaSparkContext("local[2]", "First Spark App");
    }
 
    public static void main(String... strings) {
        TestCase2Sol2 t = new TestCase2Sol2();
        System.out.println("t:"+t);
        System.out.println("sc:"+t.sc);
        t.proc3();
    }
 
    private void proc3() {
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> a + this.num1);                // 여전히 Exception 발생
        System.out.println(rdd3.collect());
    }
}
 
 
</integer></integer>

implements Serializable 을 했음에도 Exception이 발생한다.

이유인즉은, JavaSparkContext 객체를 위 코드에서 클래스의 전역변수로 사용하고 있는데, 아무리 클래스에 Serializable을 구현해놓아도

멤버필드 즉, JavaSparkContext sc 는 기본적으로 직렬화가 안되는 모양이다;;;

 

16/04/08 00:10:33 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

t:org.mystudy.testcase.TestCase2Sol2@247667dd

sc:org.apache.spark.api.java.JavaSparkContext@6f099cef

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase2Sol2.proc3(TestCase2Sol2.java:28)

at org.mystudy.testcase.TestCase2Sol2.main(TestCase2Sol2.java:23)

Caused by: java.io.NotSerializableException: org.apache.spark.api.java.JavaSparkContext

Serialization stack:

- object not serializable (class: org.apache.spark.api.java.JavaSparkContext, value: org.apache.spark.api.java.JavaSparkContext@6f099cef)

- field (class: org.mystudy.testcase.TestCase2Sol2, name: sc, type: class org.apache.spark.api.java.JavaSparkContext)

- object (class org.mystudy.testcase.TestCase2Sol2, org.mystudy.testcase.TestCase2Sol2@247667dd)

- element of array (index: 0)

- array (class [Ljava.lang.Object;, size 1)

- field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)

- object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.mystudy.testcase.TestCase2Sol2, functionalInterfaceMethod=org/apache/spark/api/java/function/Function.call:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeSpecial org/mystudy/testcase/TestCase2Sol2.lambda$0:(Ljava/lang/Integer;)Ljava/lang/Integer;, instantiatedMethodType=(Ljava/lang/Integer;)Ljava/lang/Integer;, numCaptured=1])

- writeReplace data (class: java.lang.invoke.SerializedLambda)

- object (class org.mystudy.testcase.TestCase2Sol2$$Lambda$4/1353512285, org.mystudy.testcase.TestCase2Sol2$$Lambda$4/1353512285@116a2108)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more





2-3 이렇게 해결할 수 있다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package org.mystudy.testcase;
 
import java.io.Serializable;
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase2Sol3 implements Serializable {
    private int num1 = 4;
 
    private TestCase2Sol3() {
 
    }
 
    public static void main(String... strings) {
        TestCase2Sol3 t = new TestCase2Sol3();
        t.proc3();
    }
 
    private void proc3() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> a + this.num1);            // 해결
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

JavaSparkContext 를 지역변수로 사용하였다. 해결됨.



3.실패사례 - 함수사용(멤버메서드)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase3 {
 
    private TestCase3() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase3 t = new TestCase3();
        System.out.println("t:"+t);
        t.proc3();
    }
    private int add(int num) {
        return num + 1;
    }
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> add(a));                       // Exception 발생
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

this 를 사용했던 경우와 같은 문제이다. TestCase3 클래스를 Serializable 하지 않아서 생긴 문제이다.

t:org.mystudy.testcase.TestCase3@75a1cd57

16/04/08 00:17:32 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase3.proc3(TestCase3.java:26)

at org.mystudy.testcase.TestCase3.main(TestCase3.java:18)

Caused by: java.io.NotSerializableException: org.mystudy.testcase.TestCase3

Serialization stack:

- object not serializable (class: org.mystudy.testcase.TestCase3, value: org.mystudy.testcase.TestCase3@75a1cd57)

- element of array (index: 0)

- array (class [Ljava.lang.Object;, size 1)

- field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)

- object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.mystudy.testcase.TestCase3, functionalInterfaceMethod=org/apache/spark/api/java/function/Function.call:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeSpecial org/mystudy/testcase/TestCase3.lambda$0:(Ljava/lang/Integer;)Ljava/lang/Integer;, instantiatedMethodType=(Ljava/lang/Integer;)Ljava/lang/Integer;, numCaptured=1])

- writeReplace data (class: java.lang.invoke.SerializedLambda)

- object (class org.mystudy.testcase.TestCase3$$Lambda$4/503353142, org.mystudy.testcase.TestCase3$$Lambda$4/503353142@7a1f8def)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more





3-1 해결

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
package org.mystudy.testcase;
 
import java.io.Serializable;
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
 
public class TestCase3Sol1 implements Serializable {
 
    private TestCase3Sol1() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase3Sol1 t = new TestCase3Sol1();
        t.proc3();
    }
    private int add(int num) {
        return num + 1;
    }
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> add(a));                       // 해결
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

Serializable 구현해서 해결하였다.



4.실패사례 - Function 등 인터페이스 문제

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
 
public class TestCase4 {
 
    private TestCase4() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase4 t = new TestCase4();
        System.out.println("t:"+t);
        t.proc3();
    }
 
    private void proc3() {
        class AAA implements Function<Integer, Integer> {
            @Override
            public Integer call(Integer v1) throws Exception {
                return v1 + 1;
            }
        }
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<Integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<Integer> rdd3 = rdd2.map(new AAA());                      // Exception
        System.out.println(rdd3.collect());
    }
}

무엇이 문제일까?

내부클래스를 사용했더니... 그 내부클래스를 품고 있는 바깥클래스 즉, TestCase4의 Serializable 여부를 묻고 있다. 

아무리 Function 인터페이스가 Serializable을 구현했다고 해도... 그 Function 을 구현한 AAA 라는 클래스가 바깥클래스의 정체성과 연관이 있나보다.

어쩌면 AAA 라는 내부클래스를 정의할때 org.mystudy.testcase.TestCase4$1AAA@60acd609 이렇게 사용하기에....  TestCase4$1, 결국 TestCase4 가 결정적인 역할을 하는 것 같다.

앞의 예제 this.num1 과 같이... 실제 전달하는 값은 num1 이지만, 결국 스파크에 전달되는 것은 num1을 포함하는 this가 전달되는 것과 마찬가지로..

스파크에 AAA만 전달되는 것 같지만 결국은 AAA를 포함하는 TestCase4 가 전달되는 것은 아닌가 싶다. 그래서 TestCase4  Serializable 여부를 묻고 있는 것이 아닌가???


t:org.mystudy.testcase.TestCase4@5e91993f

16/04/08 00:24:03 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase4.proc3(TestCase4.java:31)

at org.mystudy.testcase.TestCase4.main(TestCase4.java:19)

Caused by: java.io.NotSerializableException: org.mystudy.testcase.TestCase4

Serialization stack:

- object not serializable (class: org.mystudy.testcase.TestCase4, value: org.mystudy.testcase.TestCase4@5e91993f)

- field (class: org.mystudy.testcase.TestCase4$1AAA, name: this$0, type: class org.mystudy.testcase.TestCase4)

- object (class org.mystudy.testcase.TestCase4$1AAA, org.mystudy.testcase.TestCase4$1AAA@60acd609)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more






4-1. 혹시나 이렇게 해보았지만...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
 
public class TestCase4Sol1 {
 
    private TestCase4Sol1() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase4Sol1 t = new TestCase4Sol1();
        System.out.println("t:"+t);
        t.proc3();
    }
    class AAA implements Function<Integer, Integer> {
        @Override
        public Integer call(Integer v1) throws Exception {
            return v1 + 1;
        }
    }
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<Integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<Integer> rdd3 = rdd2.map(new AAA());                      //Exception
        System.out.println(rdd3.collect());
    }
}

혹시나 class를 함수밖으로 빼보았지만.... 동일한 Exception이 발생한다.

t:org.mystudy.testcase.TestCase4Sol1@5e91993f

16/04/08 00:33:11 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase4Sol1.proc3(TestCase4Sol1.java:30)

at org.mystudy.testcase.TestCase4Sol1.main(TestCase4Sol1.java:19)

Caused by: java.io.NotSerializableException: org.mystudy.testcase.TestCase4Sol1

Serialization stack:

- object not serializable (class: org.mystudy.testcase.TestCase4Sol1, value: org.mystudy.testcase.TestCase4Sol1@5e91993f)

- field (class: org.mystudy.testcase.TestCase4Sol1$AAA, name: this$0, type: class org.mystudy.testcase.TestCase4Sol1)

- object (class org.mystudy.testcase.TestCase4Sol1$AAA, org.mystudy.testcase.TestCase4Sol1$AAA@598260a6)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more





4-2 외부클래스를 이용해서 해결

1
2
3
4
5
6
7
8
9
10
package org.mystudy.testcase.vo;
 
import org.apache.spark.api.java.function.Function;
 
public class AAA implements Function<Integer, Integer> {
    @Override
    public Integer call(Integer v1) throws Exception {
        return v1 + 1;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.mystudy.testcase.vo.AAA;
 
public class TestCase4Sol2 {
 
    private TestCase4Sol2() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase4Sol2 t = new TestCase4Sol2();
        t.proc3();
    }
 
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(new AAA());                        //해결
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

외부 public 클래스를 이용했더니 해결되었다. AAA 클래스가 다른 클래스의 영향을 받지 않고, 순수하게 Function의 영향만 받아서, 문제가 생기지 않는가 보다.



5. 실패사례 - 익명 내부 클래스

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
 
public class TestCase5 {
 
    private TestCase5() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase5 t = new TestCase5();
        System.out.println("t:"+t);
        t.proc3();
    }
 
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(new Function<integer, integer="">() {      // Exception
            @Override
            public Integer call(Integer v1) throws Exception {
                return v1 + 1;
            }
 
        });
        System.out.println(rdd3.collect());
    }
}
 
</integer,></integer></integer>

왜 Exception 이 발생하는가? 책대로 하였는데-_-'''

책에서 익명 내부 클래스를 사용하라고 했는데;;;

여전히 TestCase5 를 걸고 넘어지고 있다. 그저... Serializable해주면 된다. 그런데 왜 그래야 하는가? 익명인데-___-:;;

아래의 파란색 표시를 보면, 익명이더라도... 참조가 TestCase5  로 되어있다-_-;;;;

t:org.mystudy.testcase.TestCase5@5e91993f

16/04/08 00:40:20 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase5.proc3(TestCase5.java:25)

at org.mystudy.testcase.TestCase5.main(TestCase5.java:19)

Caused by: java.io.NotSerializableException: org.mystudy.testcase.TestCase5

Serialization stack:

- object not serializable (class: org.mystudy.testcase.TestCase5, value: org.mystudy.testcase.TestCase5@5e91993f)

- field (class: org.mystudy.testcase.TestCase5$1, name: this$0, type: class org.mystudy.testcase.TestCase5)

- object (class org.mystudy.testcase.TestCase5$1, org.mystudy.testcase.TestCase5$1@60acd609)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more





5.1 변수로 받아볼까? 안돼~

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
 
public class TestCase5Sol1 {
 
    private TestCase5Sol1() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase5Sol1 t = new TestCase5Sol1();
        System.out.println("t:"+t);
        t.proc3();
    }
 
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<Integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        Function<Integer, Integer> f = new Function<Integer, Integer>() {
            @Override
            public Integer call(Integer v1) throws Exception {
                return v1 + 1;
            }
        };
        System.out.println("f:"+f);
        JavaRDD<Integer> rdd3 = rdd2.map(f);  //Exception
        System.out.println(rdd3.collect());
    }
}

변수로 받아보아도 안된다.

에러메시지를 보면 여전히 바깥클래스가 걸려있다.

t:org.mystudy.testcase.TestCase5Sol1@5e91993f

16/04/08 00:44:22 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

f:org.mystudy.testcase.TestCase5Sol1$1@363f0ba0

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase5Sol1.proc3(TestCase5Sol1.java:32)

at org.mystudy.testcase.TestCase5Sol1.main(TestCase5Sol1.java:19)

Caused by: java.io.NotSerializableException: org.mystudy.testcase.TestCase5Sol1

Serialization stack:

- object not serializable (class: org.mystudy.testcase.TestCase5Sol1, value: org.mystudy.testcase.TestCase5Sol1@5e91993f)

- field (class: org.mystudy.testcase.TestCase5Sol1$1, name: this$0, type: class org.mystudy.testcase.TestCase5Sol1)

- object (class org.mystudy.testcase.TestCase5Sol1$1, org.mystudy.testcase.TestCase5Sol1$1@363f0ba0)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more






5-2. 역시나 Serializable

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
package org.mystudy.testcase;
 
import java.io.Serializable;
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
 
public class TestCase5Sol2 implements Serializable {
 
    private TestCase5Sol2() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase5Sol2 t = new TestCase5Sol2();
        t.proc3();
    }
 
    public void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<Integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        Function<Integer, Integer> f = new Function<Integer, Integer>() {
            @Override
            public Integer call(Integer v1) throws Exception {
                return v1 + 1;
            }
        };
        JavaRDD<Integer> rdd3 = rdd2.map(f);          // 해결
        System.out.println(rdd3.collect());
    }
}

그냥.. 쉽게 생각하면, Serializable 해주면 된다-_-;;

클래스에 Serializable 해줄때, 주의할 사항은.. 클래스의 멤버필드가 모두 Serializable 하는데 문제가 없어야 된다.


>>>>


Serializable이 싫다면,,,

JAVA8 의 람다식을 사용하자. 

또는 완전 독립적인 클래스(Serializable이 구현된)를 사용하자.



조금 더 해보자...




6.성공케이스 - 외부 클래스의 함수

1
2
3
4
5
6
7
8
9
10
package org.mystudy.testcase.vo;
 
public class BBB {
    public int add(int num) {
        return num + 1;
    }
    public static int bbb(int num) {
        return num + 1;
    }
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.mystudy.testcase.vo.BBB;
 
public class TestCase6 {
 
    private TestCase6() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase6 t = new TestCase6();
        t.proc3();
    }
 
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> new BBB().add(a));         //성공       
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

왜 성공인지 모르겠다.-_- BBB 클래스는 Serializable 하지 않았는데...

일단, 위 2~5 사례는 rdd2.map(함수인스턴스 자체); 형태였는데..

지금의 사례는 rdd2.map(a -> 함수연산?); 이라...조금 다르다.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.mystudy.testcase.vo.BBB;
 
public class TestCase7 {
 
    private TestCase7() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase7 t = new TestCase7();
        t.proc3();
    }
 
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        JavaRDD<integer> rdd3 = rdd2.map(a -> BBB.bbb(a));               //성공           
        System.out.println(rdd3.collect());
    }
}
 
</integer></integer>

static 함수도 잘 된다..왜????



7.실패... 밖으로 나와서 인스턴스를 만들었더니...-__-;;;

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
package org.mystudy.testcase;
 
import java.util.Arrays;
 
import org.apache.log4j.PropertyConfigurator;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.mystudy.testcase.vo.BBB;
 
public class TestCase8 {
 
    private TestCase8() {
        PropertyConfigurator.configure("D:\workspace\spark\learning.spark\src\resources\log4j.properties");
    }
 
    public static void main(String... strings) {
        TestCase8 t = new TestCase8();
        System.out.println("t:"+t);
        t.proc3();
    }
 
    private void proc3() {
        JavaSparkContext sc = new JavaSparkContext("local[2]", "First Spark App");
        JavaRDD<integer> rdd2 = sc.parallelize(Arrays.asList(1, 2, 3, 4));
        BBB b = new BBB();
        System.out.println("b:"+b);
        JavaRDD<integer> rdd3 = rdd2.map(a -> b.add(a));                 //Exception        
        System.out.println(rdd3.collect());
    }
}
 
 
</integer></integer>

위의 잘되던 케이스에서...

람다 밖에서 BBB 인스턴스를 만들어서 넣어줬더니...

이제와서  BBB의 Serializable을 요구한다-_-;;


BBB 클래스에

public class BBB implements Serializable{ 와 같이 구현하면 에러가 사라진다...

이게 뭔가-_-;;;


t:org.mystudy.testcase.TestCase8@75a1cd57

16/04/08 01:09:34 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable

b:org.mystudy.testcase.vo.BBB@681adc8f

Exception in thread "main" org.apache.spark.SparkException: Task not serializable

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:304)

at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:294)

at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:122)

at org.apache.spark.SparkContext.clean(SparkContext.scala:2055)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:324)

at org.apache.spark.rdd.RDD$$anonfun$map$1.apply(RDD.scala:323)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)

at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)

at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)

at org.apache.spark.rdd.RDD.map(RDD.scala:323)

at org.apache.spark.api.java.JavaRDDLike$class.map(JavaRDDLike.scala:96)

at org.apache.spark.api.java.AbstractJavaRDDLike.map(JavaRDDLike.scala:46)

at org.mystudy.testcase.TestCase8.proc3(TestCase8.java:27)

at org.mystudy.testcase.TestCase8.main(TestCase8.java:19)

Caused by: java.io.NotSerializableException: org.mystudy.testcase.vo.BBB

Serialization stack:

- object not serializable (class: org.mystudy.testcase.vo.BBB, value: org.mystudy.testcase.vo.BBB@681adc8f)

- element of array (index: 0)

- array (class [Ljava.lang.Object;, size 1)

- field (class: java.lang.invoke.SerializedLambda, name: capturedArgs, type: class [Ljava.lang.Object;)

- object (class java.lang.invoke.SerializedLambda, SerializedLambda[capturingClass=class org.mystudy.testcase.TestCase8, functionalInterfaceMethod=org/apache/spark/api/java/function/Function.call:(Ljava/lang/Object;)Ljava/lang/Object;, implementation=invokeStatic org/mystudy/testcase/TestCase8.lambda$0:(Lorg/mystudy/testcase/vo/BBB;Ljava/lang/Integer;)Ljava/lang/Integer;, instantiatedMethodType=(Ljava/lang/Integer;)Ljava/lang/Integer;, numCaptured=1])

- writeReplace data (class: java.lang.invoke.SerializedLambda)

- object (class org.mystudy.testcase.TestCase8$$Lambda$4/1018067851, org.mystudy.testcase.TestCase8$$Lambda$4/1018067851@5e8c34a0)

- field (class: org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, name: fun$1, type: interface org.apache.spark.api.java.function.Function)

- object (class org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1, <function1>)

at org.apache.spark.serializer.SerializationDebugger$.improveException(SerializationDebugger.scala:40)

at org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47)

at org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101)

at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:301)

... 13 more



출처: http://java8.tistory.com/39 [버그 리포트]

번호 제목 날짜 조회 수
41 Scala에서 countByWindow를 이용하기(예제) 2018.03.08 1002
40 Scala를 이용한 Streaming예제 2018.03.08 899
39 scala application 샘플소스(SparkSession이용) 2018.03.07 1095
38 spark-submit 실행시 "java.lang.OutOfMemoryError: Java heap space"발생시 조치사항 2018.02.01 788
37 Could not compute split, block input-0-1517397051800 not found형태의 오류가 발생시 조치방법 2018.02.01 492
36 spark stream처리할때 두개의 client프로그램이 동일한 checkpoint로 접근할때 발생하는 오류 내용 2018.01.16 1238
35 Windows7 64bit 환경에서 Apache Spark 2.2.0 설치하기 2017.07.26 952
34 Spark에서 KafkaUtils.createStream()를 이용하여 이용하여 kafka topic에 접근하여 객채로 저장된 값을 가져오고 처리하는 예제 소스 2017.04.26 480
» Spark에서 Serializable관련 오류및 조치사항 2017.04.21 5124
32 Caused by: java.lang.ClassNotFoundException: org.apache.spark.Logging 발생시 조치사항 2017.04.19 852
31 streaming작업시 입력된 값에 대한 사본을 만들게 되는데 이것이 실패했을때 발생하는 경고메세지 2017.04.03 824
30 JavaStreamingContext를 이용하여 스트림으로 들어오는 문자열 카운트 소스 2017.03.30 287
29 spark 2.0.0의 api를 이용하는 예제 프로그램 2017.03.15 377
28 It is indirectly referenced from required .class files 오류 발생시 조치방법 2017.03.09 875
27 spark2.0.0에서 hive 2.0.1 table을 읽어 출력하는 예제 소스(HiveContext, SparkSession, SQLContext) 2017.03.09 379
26 spark에서 hive table을 읽어 출력하는 예제 소스 2017.03.09 662
25 spark에서 hive table을 읽어 출력하는 예제 소스 2017.03.09 871
24 spark 2.0.0를 windows에서 실행시 로컬 파일을 읽을때 발생하는 오류 해결 방법 2017.01.12 568
23 spark notebook 0.7.0설치및 설정 2016.11.14 755
22 참고할만한 spark예제를 설명하는 사이트 2016.11.11 601
위로