메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


Spark에서 KafkaUtils.createStream을 이용하여 Kafka의 data를 가져올때 StorageLevel을 StorageLevel.MEMORY_ONLY()로 하는 경우 "Could not compute split, block input-0-1517397051800 not found"형태의 오류가 발생하는데 이는 Spark가 메모리 부족 상황이 되면 해당 데이타를 버리기 때문에 문제가 발생한다.

이때는 StorageLevel.MEMORY_ONLY()을 StorageLevel.MEMORY_AND_DISK_SER()로 변경해준다.



-------------소스코드 일부분-----

JavaPairReceiverInputDStream<byte[], byte[]> kafkaStream = KafkaUtils.createStream(jssc,byte[].class, byte[].class, kafka.serializer.DefaultDecoder.class, kafka.serializer.DefaultDecoder.class,
        conf, topic, StorageLevel.MEMORY_AND_DISK_SER());
JavaDStream<byte[]> lines = kafkaStream.map(tuple2 -> tuple2._2());


-----------------------------------오류 메세지------------------

[2018-01-31 20:17:26,404] [internal.Logging$class] [logError(#70)] [ERROR] Task 0 in stage 1020.0 failed 1 times; aborting job
[2018-01-31 20:17:26,404] [internal.Logging$class] [logError(#91)] [ERROR] Error running job streaming job 1517397060000 ms.0
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1020.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1020.0 (TID 1020, localhost, executor driver): java.lang.Exception: Could not compute split, block input-0-1517397051800 not found
        at org.apache.spark.rdd.BlockRDD.compute(BlockRDD.scala:50)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1938)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1951)
        at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1354)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
        at org.apache.spark.rdd.RDD.take(RDD.scala:1327)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:734)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:733)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
        at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
        at scala.util.Try$.apply(Try.scala:192)
        at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:256)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:256)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:256)
        at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:255)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.Exception: Could not compute split, block input-0-1517397051800 not found
        at org.apache.spark.rdd.BlockRDD.compute(BlockRDD.scala:50)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
        at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
        at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
        ... 3 more
[2018-01-31 20:17:26,415] [onem2m.AvroOneM2MDataSparkSubscribe$ConsumerT] [go(#142)] [DEBUG] count data from kafka broker stream in AvroOneM2MDataSparkSubscribe: 39981
[2018-01-31 20:17:29,039] [sf.QueryServiceFactory] [create(#28)] [DEBUG] query gubun : FUSEKISPARQL
[2018-01-31 20:17:29,040] [sf.QueryCommon] [makeFinal(#44)] [DEBUG] Count : 0 , Vals : [] 
[2018-01-31 20:17:29,040] [sf.SparqlFusekiQueryImpl] [runModifySparql(#162)] [DEBUG] runModifySparql() on DatWarehouse server start.................................. 
[2018-01-31 20:17:29,040] [sf.SparqlFusekiQueryImpl] [runModifySparql(#165)] [DEBUG] try (first).................................. 
[2018-01-31 20:17:29,042] [sf.SparqlFusekiQueryImpl] [runModifySparql(#207)] [DEBUG] runModifySparql() on DataWarehouse server end.................................. 
[2018-01-31 20:17:29,042] [sf.SparqlFusekiQueryImpl] [runModifySparql(#212)] [DEBUG] runModifySparql() on DataMart server start.................................. 
[2018-01-31 20:17:29,043] [sf.SparqlFusekiQueryImpl] [runModifySparql(#224)] [DEBUG] runModifySparql() on DataMart server end.................................. 
[2018-01-31 20:17:29,044] [sf.QueryCommon] [makeFinal(#44)] [DEBUG] Count : 0 , Vals : [] 
[2018-01-31 20:17:29,044] [sf.SparqlFusekiQueryImpl] [runModifySparql(#162)] [DEBUG] runModifySparql() on DatWarehouse server start.................................. 
[2018-01-31 20:17:29,044] [sf.SparqlFusekiQueryImpl] [runModifySparql(#165)] [DEBUG] try (first).................................. 
[2018-01-31 20:17:29,045] [sf.SparqlFusekiQueryImpl] [runModifySparql(#207)] [DEBUG] runModifySparql() on DataWarehouse server end.................................. 
[2018-01-31 20:17:29,045] [sf.SparqlFusekiQueryImpl] [runModifySparql(#212)] [DEBUG] runModifySparql() on DataMart server start.................................. 
[2018-01-31 20:17:29,046] [sf.SparqlFusekiQueryImpl] [runModifySparql(#224)] [DEBUG] runModifySparql() on DataMart server end.................................. 
[2018-01-31 20:17:29,047] [sf.QueryCommon] [makeFinal(#44)] [DEBUG] Count : 0 , Vals : [] 
[2018-01-31 20:17:29,047] [sf.SparqlFusekiQueryImpl] [runModifySparql(#212)] [DEBUG] runModifySparql() on DataMart server start.................................. 
[2018-01-31 20:17:29,049] [sf.SparqlFusekiQueryImpl] [runModifySparql(#224)] [DEBUG] runModifySparql() on DataMart server end.................................. 
[2018-01-31 20:17:29,049] [sf.TripleService] [makeTripleFile(#333)] [INFO] makeTripleFile start==========================>
[2018-01-31 20:17:29,049] [sf.TripleService] [makeTripleFile(#334)] [DEBUG] makeTripleFile ========triple_path_file=================>/svc/apps/sda/triples/20180131/AvroOneM2MDataSparkSubscribe_TT20180131T201100S0000000991_WRK20180131T201729.nt
[2018-01-31 20:17:29,170] [sf.TripleService] [makeTripleFile(#346)] [INFO] makeTripleFile end==========================>
[2018-01-31 20:17:29,170] [onem2m.AvroOneM2MDataSparkSubscribe] [sendTriples(#288)] [INFO] Sending triples in com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe to DW start.......................
[2018-01-31 20:17:29,170] [sf.TripleService] [sendTripleFileToDW(#382)] [INFO] sendTripleFile to DW start==========================>
[2018-01-31 20:17:29,170] [sf.TripleService] [sendTripleFileToDW(#383)] [DEBUG] sendTripleFile ==============triple_path_file============>/svc/apps/sda/triples/20180131/AvroOneM2MDataSparkSubscribe_TT20180131T201100S0000000991_WRK20180131T201729.nt
[2018-01-31 20:17:29,171] [sf.TripleService] [sendTripleFileToDW(#396)] [DEBUG] sendTripleFile ==============args============>/svc/apps/sda/bin/fuseki/bin/s-post http://166.104.112.43:23030/icbms default /svc/apps/sda/triples/20180131/AvroOneM2MDataSparkSubscribe_TT20180131T201100S0000000991_WRK20180131T201729.nt 
[2018-01-31 20:17:29,171] [sf.TripleService] [sendTripleFileToDW(#399)] [DEBUG] try (first).......................
[2018-01-31 20:17:36,950] [util.Utils] [runShell(#737)] [DEBUG] Thread stdMsgT Status : TERMINATED
[2018-01-31 20:17:36,951] [util.Utils] [runShell(#738)] [DEBUG] Thread errMsgT Status : TERMINATED
[2018-01-31 20:17:36,951] [util.Utils] [runShell(#743)] [DEBUG] notTimeOver ==========================>true
[2018-01-31 20:17:36,951] [sf.TripleService] [sendTripleFileToDW(#402)] [DEBUG] resultStr in TripleService.sendTripleFileToDW() == > [, ]
[2018-01-31 20:17:36,951] [sf.TripleService] [sendTripleFileToDW(#433)] [INFO] sendTripleFile to DW  end==========================>
[2018-01-31 20:17:36,951] [onem2m.AvroOneM2MDataSparkSubscribe] [sendTriples(#290)] [INFO] Sending triples in com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe to DW end.......................
[2018-01-31 20:17:36,951] [onem2m.AvroOneM2MDataSparkSubscribe] [sendTriples(#293)] [INFO] Sending triples in com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe to Halyard start.......................
[2018-01-31 20:17:36,952] [sf.TripleService] [sendTripleFileToHalyard(#486)] [INFO] sendTripleFile to Halyard  start==========================>
[2018-01-31 20:17:37,294] [sf.QueryServiceFactory] [create(#31)] [DEBUG] query gubun : HALYARDSPARQL
[2018-01-31 20:17:37,317] [sf.SparqlHalyardQueryImpl] [insertByPost(#189)] [DEBUG] ------------------------insertByPost-----start-----------------------
[2018-01-31 20:17:37,317] [sf.SparqlHalyardQueryImpl] [insertByPost(#198)] [DEBUG] ------------------------insertByPost-----end-----------------------

번호 제목 날짜 조회 수
240 Cloudera설치중에 "Error, CM server guid updated"오류 발생시 조치방법 2018.03.29 338
239 Cloudera가 사용하는 서비스별 포트 2018.03.29 1077
238 Cloudera가 사용하는 서비스별 디렉토리 2018.03.29 644
237 cloudera-scm-agent 설정파일 위치및 재시작 명령문 2018.03.29 956
236 Components of the Impala Server 2018.03.21 598
235 HDFS Balancer설정및 수행 2018.03.21 602
234 hadoop 클러스터 실행 스크립트 정리 2018.03.20 1675
233 HA(Namenode, ResourceManager, Kerberos) 및 보안(Zookeeper, Hadoop) 2018.03.16 250
232 update 샘플 2018.03.12 1324
231 Scala에서 countByWindow를 이용하기(예제) 2018.03.08 961
230 Scala를 이용한 Streaming예제 2018.03.08 890
229 scala application 샘플소스(SparkSession이용) 2018.03.07 1078
228 spark-submit 실행시 "java.lang.OutOfMemoryError: Java heap space"발생시 조치사항 2018.02.01 754
» Could not compute split, block input-0-1517397051800 not found형태의 오류가 발생시 조치방법 2018.02.01 452
226 Hadoop의 Datanode를 Decommission하고 나서 HBase의 regionservers파일에 해당 노드명을 지웠는데 여전히 "Dead regionser"로 표시되는 경우 처리 2018.01.25 881
225 spark stream처리할때 두개의 client프로그램이 동일한 checkpoint로 접근할때 발생하는 오류 내용 2018.01.16 1221
224 [Decommission]시 시간이 많이 걸리면서(수일) Decommission이 완료되지 않는 경우 조치 2018.01.03 6550
223 [2.7.2] distribute-exclude.sh사용할때 ssh 포트변경에 따른 오류발생시 조치사항 2018.01.02 859
222 hadoop cluster에 포함된 노드중에서 문제있는 decommission하는 방법및 절차 file 2017.12.28 1335
221 [DBeaver 4.3.0]import/export시 "Client home is not specified for connection" 오류발생시 조치사항 2017.12.21 1170
위로