메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


StringBuffer의 값을 toString()을 이용하여 문자열로 변환할때 "java.lang.OutOfMemoryError: Java heap space"가 발생하는데 이것은 StringBuffer.toString()하는 과정에서 값을 복사하는데 이때 heap메모리가 부족해서 발생하는 오류이다.

이때는 spark-submit에서 --driver-memory 5g처럼 지정하는 메모리를 크게 증가시켜서 -Xmx값을 증가시켜준다.


------------------오류내용------------------------

[2018-02-01 10:12:40,253] [internal.Logging$class] [logError(#70)] [ERROR] Task 0 in stage 20.0 failed 1 times; aborting job
[2018-02-01 10:12:40,267] [internal.Logging$class] [logError(#91)] [ERROR] Error running job streaming job 1517447030000 ms.0
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 20.0 failed 1 times, most recent failure: Lost task 0.0 in stage 20.0 (TID 20, localhost, executor driver): java.lang.OutOfMemoryError: Java heap space
        at java.util.Arrays.copyOfRange(Arrays.java:3664)
        at java.lang.StringBuffer.toString(StringBuffer.java:671)
        at com.pineone.icbms.sda.sf.TripleService.sendTripleFileToHalyard(TripleService.java:500)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe.sendTriples(AvroOneM2MDataSparkSubscribe.java:296)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe.access$100(AvroOneM2MDataSparkSubscribe.java:34)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe$ConsumerT.go(AvroOneM2MDataSparkSubscribe.java:202)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe$1.call(AvroOneM2MDataSparkSubscribe.java:101)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe$1.call(AvroOneM2MDataSparkSubscribe.java:93)
        at org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1040)
        at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
        at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at scala.collection.AbstractIterator.to(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
        at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1354)
        at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1354)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

Driver stacktrace:
        at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1423)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1422)
        at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1422)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:802)
        at scala.Option.foreach(Option.scala:257)
        at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:802)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1650)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605)
        at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594)
        at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
        at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1938)
        at org.apache.spark.SparkContext.runJob(SparkContext.scala:1951)
        at org.apache.spark.rdd.RDD$$anonfun$take$1.apply(RDD.scala:1354)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
        at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
        at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
        at org.apache.spark.rdd.RDD.take(RDD.scala:1327)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:734)
        at org.apache.spark.streaming.dstream.DStream$$anonfun$print$2$$anonfun$foreachFunc$3$1.apply(DStream.scala:733)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(ForEachDStream.scala:51)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1$$anonfun$apply$mcV$sp$1.apply(ForEachDStream.scala:51)
        at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:415)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply$mcV$sp(ForEachDStream.scala:50)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
        at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$1.apply(ForEachDStream.scala:50)
        at scala.util.Try$.apply(Try.scala:192)
        at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply$mcV$sp(JobScheduler.scala:256)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:256)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$1.apply(JobScheduler.scala:256)
        at scala.util.DynamicVariable.withValue(DynamicVariable.scala:58)
        at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:255)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.OutOfMemoryError: Java heap space
        at java.util.Arrays.copyOfRange(Arrays.java:3664)
        at java.lang.StringBuffer.toString(StringBuffer.java:671)
        at com.pineone.icbms.sda.sf.TripleService.sendTripleFileToHalyard(TripleService.java:500)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe.sendTriples(AvroOneM2MDataSparkSubscribe.java:296)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe.access$100(AvroOneM2MDataSparkSubscribe.java:34)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe$ConsumerT.go(AvroOneM2MDataSparkSubscribe.java:202)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe$1.call(AvroOneM2MDataSparkSubscribe.java:101)
        at com.pineone.icbms.sda.kafka.onem2m.AvroOneM2MDataSparkSubscribe$1.call(AvroOneM2MDataSparkSubscribe.java:93)
        at org.apache.spark.api.java.JavaPairRDD$$anonfun$toScalaFunction$1.apply(JavaPairRDD.scala:1040)
        at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)
        at scala.collection.Iterator$$anon$10.next(Iterator.scala:393)
        at scala.collection.Iterator$class.foreach(Iterator.scala:893)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
        at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
        at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
        at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
        at scala.collection.AbstractIterator.to(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
        at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1336)
        at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
        at scala.collection.AbstractIterator.toArray(Iterator.scala:1336)
        at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1354)
        at org.apache.spark.rdd.RDD$$anonfun$take$1$$anonfun$29.apply(RDD.scala:1354)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
        at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1951)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
        at org.apache.spark.scheduler.Task.run(Task.scala:99)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:322)
        ... 3 more

번호 제목 날짜 조회 수
242 각 서버에 설치되는 cloudera서비스 프로그램 목록(CDH 5.14.0의 경우) 2018.03.29 781
241 Cloudera설치중 실패로 여러번 설치하는 과정에 "Running in non-interactive mode, and data appears to exist in Storage Directory /dfs/nn. Not formatting." 오류가 발생시 조치하는 방법 2018.03.29 1163
240 Cloudera설치중에 "Error, CM server guid updated"오류 발생시 조치방법 2018.03.29 340
239 Cloudera가 사용하는 서비스별 포트 2018.03.29 1095
238 Cloudera가 사용하는 서비스별 디렉토리 2018.03.29 706
237 cloudera-scm-agent 설정파일 위치및 재시작 명령문 2018.03.29 996
236 Components of the Impala Server 2018.03.21 602
235 HDFS Balancer설정및 수행 2018.03.21 685
234 hadoop 클러스터 실행 스크립트 정리 2018.03.20 1681
233 HA(Namenode, ResourceManager, Kerberos) 및 보안(Zookeeper, Hadoop) 2018.03.16 253
232 update 샘플 2018.03.12 1516
231 Scala에서 countByWindow를 이용하기(예제) 2018.03.08 1034
230 Scala를 이용한 Streaming예제 2018.03.08 945
229 scala application 샘플소스(SparkSession이용) 2018.03.07 1149
» spark-submit 실행시 "java.lang.OutOfMemoryError: Java heap space"발생시 조치사항 2018.02.01 794
227 Could not compute split, block input-0-1517397051800 not found형태의 오류가 발생시 조치방법 2018.02.01 508
226 Hadoop의 Datanode를 Decommission하고 나서 HBase의 regionservers파일에 해당 노드명을 지웠는데 여전히 "Dead regionser"로 표시되는 경우 처리 2018.01.25 1033
225 spark stream처리할때 두개의 client프로그램이 동일한 checkpoint로 접근할때 발생하는 오류 내용 2018.01.16 1250
224 [Decommission]시 시간이 많이 걸리면서(수일) Decommission이 완료되지 않는 경우 조치 2018.01.03 6619
223 [2.7.2] distribute-exclude.sh사용할때 ssh 포트변경에 따른 오류발생시 조치사항 2018.01.02 953
위로