메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


출처 : http://letsexplorehadoop.blogspot.com/2016/05/upsert-in-hive-3-step-process.html



아래설명을 기준으로 hive에서 실행해본 hive script

--------------------------------------------------------------------------------------------------

-- create table if not exists site_view_hist(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


-- gooper@gsda1:/var/log$ hdfs dfs -cat /user/hive/warehouse/site_view_hist/hit_date=2016-01-01/000000_0

--iexplorer,123,456


SET hive.support.concurrency = true;

SET hive.enforce.bucketing = true;

SET hive.exec.dynamic.partition.mode = nonstrict;

SET hive.txn.manager =org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

SET hive.compactor.initiator.on = true;

SET hive.compactor.worker.threads = 1;


truncate table site_view_hist;

truncate table site_view_raw;



insert into table site_view_hist partition(hit_date='2016-01-01') values('iexplorer', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('firefox', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('chrome', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-02') values('firefox', 111, 431);

insert into table site_view_hist partition(hit_date='2016-01-03') values('chrome', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('iexplorer', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('firefox', 987, 654);

insert into table site_view_hist partition(hit_date='2016-01-04') values('chrome', 529, 912);

insert into table site_view_hist partition(hit_date='2016-01-05') values('firefox', 911, 888);

insert into table site_view_hist partition(hit_date='2016-01-06') values('iexplorer', 900, 833);



select * from site_view_hist;


-- create table if not exists site_view_raw(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


insert into table site_view_raw partition(hit_date='2016-01-01') values('chrome', 246, 789);

insert into table site_view_raw partition(hit_date='2016-01-01') values('firefox', 999, 200);

insert into table site_view_raw partition(hit_date='2016-01-31') values('iexplorer', 144, 999);


select * from site_view_raw;



select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r);


drop table site_view_temp1;


--아래 설명에서 subquery부분에 brower_name is not null을 추가하여 파티션만 있고 데이타 없는 경우는 포함되지 않도록함

create table site_view_temp1

as select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r where r.brower_name is not null);


select * from site_view_temp1;


create table site_view_temp2 as select t1.* from site_view_temp1 t1

where not exists

(select 1 from site_view_raw r

where t1.brower_name=r.brower_name

and t1.hit_date=r.hit_date);


select * from site_view_temp2;



insert into table site_view_temp2

select * 

from site_view_raw;


select * from site_view_temp2;


insert overwrite table site_view_hist

partition(hit_date)

select * from site_view_temp2;



select * from site_view_hist;

--------------------------------------------------------------------------------------------------

UPSERT in Hive(3 Step Process)

In this post I am providing a 3 step process for performing UPSERT in hive on a large size table containing entire history.
Just for the audience not aware of UPSERT - It is a combination of UPDATE and INSERT. If on a table containing history data, we receive new data which needs to be inserted as well as some data which is an UPDATE to the existing data, then we have to perform an UPSERT operation to achieve this.

Prerequisite – The table containing history being very large in size should be partitioned, which is also a best practice for efficient data storage, when working with large data in hive.

Business scenario – Lets take a scenario of a website table containing website metrics as gathered from different browsers of visitors who visited the website. The site_view_hist table contains the clicks and page impressions counts from different browsers and the table is partitioned on hit_date(the date on which the visitor visited the website).
Clicks – number of clicks(Eg on adds displayed) done by visitor on website page.
Impressions – number of times the website pages or different sections were viewed by the visitor.

Problem statement - If we receive correction in the number of clicks and impressions as recorded by browser, we need to update them in the history table and also insert any new records we received.
Lets dive into it:
In the history table we have browser_name and hit_date as a composite key which will remain constant and we receive updates in the values of clicks_count and impressions_count columns.
DDL of history table

Data:

Now suppose we receive records for date 2016-01-01(marked in blue) for firefox and chrome browsers, with an updated value of clicks and impressions, and we also received a new record(iexplorer) for 2016-01-31. Let us store these new and updated records in the following raw table:
DDL of Raw table




Data

Now we need an UPSERT solution, which updates the records of site_view_hist table for hit_date 2016-01-01 and insert the new record for 2016-01-31.
                                               SOLUTION (3 STEP):
To achieve this in an efficient way, we will use the following 3 step process:
Prep Step - We should first get those partitions from the history table which needs to be updated. So we create a temp table site_view_temp1 which contains the rows from history with hit_date equal to the hit_date of raw table.
This will bring us all the hit_date partitions from history table for which atleast one updated record exists in the raw table.
Note - Instead of table we can also create a view for efficient processing and saving storage space.


Data of site_view_temp1 table:

Step 1 – From these fetched partitions we will separate the old unchanged rows. These are the rows in which there is no change in the clicks and impressions count. For this we will create a temp table site_view_temp2 as follows:








Data of site_view_temp2 table:

Step2 – Now we will insert into this new temp table, all the rows from the raw table. This step will bring in the updated rows as well as any new rows. And since site_view_temp2 already contained the old rows, so it will now have all the rows including new, updated, and unchanged old rows. Following query does this: 



New Data of site_view_temp2 table

Step3 – Now simply insert overwriting the site_view_hist table with site_view_temp2 table, will provide us the required output rows including two updated rows for 2016-01-01 and one new inserted row for 2016-01-31.
Catch – Since the history table is partitioned on the hit_date, the respective partitions will only be overwritten as follows:




Final history table  with updated and inserted rows:

Benefits of this approach:         
  1. In the prep step itself since we are fetching just the partitions we have to update, so we are not scanning the whole history table. This makes our processing faster.
  2. In the final step as we are insert overwriting the history with the temp table, we are touching just the partition we want to update along with a new partition created for the new record.This gives a high performance gain, as I gained for my production process on a 6.7 TB history table with over 5 billion records. But since my 3 step process(included in one hive script) just touched few partitions of few thousand rows, the process completed in just minutes.
번호 제목 날짜 조회 수
47 [CDP7.1.7, Hive Replication]Hive Replication진행중 "The following columns have types incompatible with the existing columns in their respective positions " 오류 2023.12.27 186
46 hive의 메타정보 테이블을 MariaDB로 사용하는 경우 table comment나 column comment에 한글 입력시 깨지는 경우 utf8로 바꾸는 방법. 2023.03.10 1359
45 [hive] hive.tbls테이블의 owner컬럼값은 hadoop.security.auth_to_local에 의해서 filtering된다. 2022.04.14 640
44 hive metastore db중 TBLS, TABLE_PARAMS테이블 설명 2021.10.22 1019
43 impala session type별 표시되는 정보로 구분하는 방법 2021.05.25 899
42 Hive JDBC Connection과 유형별 에러및 필요한 jar파일 2021.05.24 1016
41 hive metadata(hive, impala, kudu 정보가 있음) 테이블에서 db, table, owner, location를 조회하는 쿼리 2020.02.07 1068
40 hive테이블의 물리적인 위치인 HDFS에 여러개의 데이터 파일이 존재할때 한개의 파일로 merge하여 동일한 테이블에 입력하는 방법 2019.05.23 1299
39 json으로 존재하는 데이터 parsing하기 2019.03.25 1657
38 [sentry]role부여후 테이블명이 변경되어 오류가 발생할때 조치방법 2018.10.16 992
37 hive metastore ERD file 2018.09.20 957
36 oracle to hive data type정리표 2018.08.22 5113
» upsert구현방법(년-월-일 파티션을 기준으로) 및 테스트 script file 2018.07.03 2082
34 beeline으로 접근시 "User: gooper is not allowed to impersonate anonymous (state=08S01,code=0)"가 발생하면서 "No current connection"이 발생하는 경우 조치 2018.04.15 883
33 Hive MetaStore Server기동시 Could not create "increment"/"table" value-generation container SEQUENCE_TABLE since autoCreate flags do not allow it. 오류발생시 조치사항 2017.05.03 678
32 Ubuntu 16.04 LTS에 Hive 2.1.1설치하면서 "Version information not found in metastore"발생하는 오류원인및 조치사항 2017.05.03 658
31 AIX 7.1에서 hive실행시 "hive: line 86: readlink: command not found" 오류가 발생시 임시 조치사항 2016.09.25 964
30 hive기동시 Caused by: java.net.URISyntaxException: Relative path in absolute URI: ${system:java.io.tmpdir%7D/$%7Bsystem:user.name%7D 오류 발생시 조치사항 2016.09.25 1041
29 schema설정없이 hive를 최초에 실행했을때 발생하는 오류메세지및 처리방법 2016.09.25 1362
28 beeline실행시 User: root is not allowed to impersonate오류 발생시 조치사항 2016.06.03 922
위로