메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


출처 : http://letsexplorehadoop.blogspot.com/2016/05/upsert-in-hive-3-step-process.html



아래설명을 기준으로 hive에서 실행해본 hive script

--------------------------------------------------------------------------------------------------

-- create table if not exists site_view_hist(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


-- gooper@gsda1:/var/log$ hdfs dfs -cat /user/hive/warehouse/site_view_hist/hit_date=2016-01-01/000000_0

--iexplorer,123,456


SET hive.support.concurrency = true;

SET hive.enforce.bucketing = true;

SET hive.exec.dynamic.partition.mode = nonstrict;

SET hive.txn.manager =org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

SET hive.compactor.initiator.on = true;

SET hive.compactor.worker.threads = 1;


truncate table site_view_hist;

truncate table site_view_raw;



insert into table site_view_hist partition(hit_date='2016-01-01') values('iexplorer', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('firefox', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('chrome', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-02') values('firefox', 111, 431);

insert into table site_view_hist partition(hit_date='2016-01-03') values('chrome', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('iexplorer', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('firefox', 987, 654);

insert into table site_view_hist partition(hit_date='2016-01-04') values('chrome', 529, 912);

insert into table site_view_hist partition(hit_date='2016-01-05') values('firefox', 911, 888);

insert into table site_view_hist partition(hit_date='2016-01-06') values('iexplorer', 900, 833);



select * from site_view_hist;


-- create table if not exists site_view_raw(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


insert into table site_view_raw partition(hit_date='2016-01-01') values('chrome', 246, 789);

insert into table site_view_raw partition(hit_date='2016-01-01') values('firefox', 999, 200);

insert into table site_view_raw partition(hit_date='2016-01-31') values('iexplorer', 144, 999);


select * from site_view_raw;



select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r);


drop table site_view_temp1;


--아래 설명에서 subquery부분에 brower_name is not null을 추가하여 파티션만 있고 데이타 없는 경우는 포함되지 않도록함

create table site_view_temp1

as select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r where r.brower_name is not null);


select * from site_view_temp1;


create table site_view_temp2 as select t1.* from site_view_temp1 t1

where not exists

(select 1 from site_view_raw r

where t1.brower_name=r.brower_name

and t1.hit_date=r.hit_date);


select * from site_view_temp2;



insert into table site_view_temp2

select * 

from site_view_raw;


select * from site_view_temp2;


insert overwrite table site_view_hist

partition(hit_date)

select * from site_view_temp2;



select * from site_view_hist;

--------------------------------------------------------------------------------------------------

UPSERT in Hive(3 Step Process)

In this post I am providing a 3 step process for performing UPSERT in hive on a large size table containing entire history.
Just for the audience not aware of UPSERT - It is a combination of UPDATE and INSERT. If on a table containing history data, we receive new data which needs to be inserted as well as some data which is an UPDATE to the existing data, then we have to perform an UPSERT operation to achieve this.

Prerequisite – The table containing history being very large in size should be partitioned, which is also a best practice for efficient data storage, when working with large data in hive.

Business scenario – Lets take a scenario of a website table containing website metrics as gathered from different browsers of visitors who visited the website. The site_view_hist table contains the clicks and page impressions counts from different browsers and the table is partitioned on hit_date(the date on which the visitor visited the website).
Clicks – number of clicks(Eg on adds displayed) done by visitor on website page.
Impressions – number of times the website pages or different sections were viewed by the visitor.

Problem statement - If we receive correction in the number of clicks and impressions as recorded by browser, we need to update them in the history table and also insert any new records we received.
Lets dive into it:
In the history table we have browser_name and hit_date as a composite key which will remain constant and we receive updates in the values of clicks_count and impressions_count columns.
DDL of history table

Data:

Now suppose we receive records for date 2016-01-01(marked in blue) for firefox and chrome browsers, with an updated value of clicks and impressions, and we also received a new record(iexplorer) for 2016-01-31. Let us store these new and updated records in the following raw table:
DDL of Raw table




Data

Now we need an UPSERT solution, which updates the records of site_view_hist table for hit_date 2016-01-01 and insert the new record for 2016-01-31.
                                               SOLUTION (3 STEP):
To achieve this in an efficient way, we will use the following 3 step process:
Prep Step - We should first get those partitions from the history table which needs to be updated. So we create a temp table site_view_temp1 which contains the rows from history with hit_date equal to the hit_date of raw table.
This will bring us all the hit_date partitions from history table for which atleast one updated record exists in the raw table.
Note - Instead of table we can also create a view for efficient processing and saving storage space.


Data of site_view_temp1 table:

Step 1 – From these fetched partitions we will separate the old unchanged rows. These are the rows in which there is no change in the clicks and impressions count. For this we will create a temp table site_view_temp2 as follows:








Data of site_view_temp2 table:

Step2 – Now we will insert into this new temp table, all the rows from the raw table. This step will bring in the updated rows as well as any new rows. And since site_view_temp2 already contained the old rows, so it will now have all the rows including new, updated, and unchanged old rows. Following query does this: 



New Data of site_view_temp2 table

Step3 – Now simply insert overwriting the site_view_hist table with site_view_temp2 table, will provide us the required output rows including two updated rows for 2016-01-01 and one new inserted row for 2016-01-31.
Catch – Since the history table is partitioned on the hit_date, the respective partitions will only be overwritten as follows:




Final history table  with updated and inserted rows:

Benefits of this approach:         
  1. In the prep step itself since we are fetching just the partitions we have to update, so we are not scanning the whole history table. This makes our processing faster.
  2. In the final step as we are insert overwriting the history with the temp table, we are touching just the partition we want to update along with a new partition created for the new record.This gives a high performance gain, as I gained for my production process on a 6.7 TB history table with over 5 billion records. But since my 3 step process(included in one hive script) just touched few partitions of few thousand rows, the process completed in just minutes.
번호 제목 날짜 조회 수
562 cloudera(python 2.7.5)에서 anaconda3로 설치한 외부 python(3.6.6)을 이용하여 pyspark를 사용하는 설정 2018.09.14 1416
561 ntp시간 맞추기 2018.09.12 514
560 ubuntu 커널 업그레이드 방법 2018.09.02 1540
559 oracle to hive data type정리표 2018.08.22 5146
558 postgresql-9.4에서 FATAL: remaining connection slots are reserved for non-replication superuser connections가 나올때 조치 2018.08.16 1461
557 sentry설정 방법및 활성화시 설정이 필요한 파일및 설정값, 계정생성 방법 2018.08.16 1192
556 컬럼및 라인의 구분자를 지정하여 sqoop으로 데이타를 가져오고 hive테이블을 생성하는 명령문 2018.08.03 1103
555 sqoop으로 mariadb에 접근해서 hive 테이블로 자동으로 생성하기 2018.08.03 1306
554 Last transaction was partial에 따른 Unable to load database on disk오류 발생시 조치사항 2018.08.03 4153
553 RHEL 7.4에 zeppelin 0.7.4 설치 2018.07.31 1091
552 conda를 이용한 jupyterhub(v0.9)및 jupyter설치 (v4.4.0) 2018.07.30 1071
551 anaconda3 (v5.2) 설치및 머신러닝 관련 라이브러리 설치 절차 2018.07.27 929
550 anaconda3(v5.4)를 이용하여 tensorflow설치후 ipython프로그램을 실행하여 import할때 오류발생시 조치 2018.07.27 366
549 HiveServer2인증을 PAM을 이용하도록 설정하는 방법 2018.07.21 904
548 [postgresql 9.x] PostgreSQL Replication 구축하기 2018.07.17 752
547 spark 2.3.0을 설치하가 위해서 parcel에 다음 url을 입력한다. 2018.07.15 402
546 sentry설정후 beeline으로 hive2server에 접속하여 admin계정에 admin권한 부여하기 2018.07.03 781
» upsert구현방법(년-월-일 파티션을 기준으로) 및 테스트 script file 2018.07.03 2107
544 resouce manager에 dr.who가 아닌 다른 사용자로 로그인 하기 2018.06.28 1730
543 하둡기반 데이타 모델링(6편) 2018.06.27 426
위로